editing disabled

The temperaments listed are 12edo-distinct, meaning that they are all different even if tuned in 12edo. The ordering is by increasing complexity of 3. The temperament of lowest TE complexity supported by the 12f val (<12 19 28 34 42 45|) was chosen as the representative for each class of edo-distinctness.

5-limit temperaments

Number
Wedgie
Name
Complexity
Commas
1
<<1 4 4]]
Meantone
1.231
81/80
2
<<2 -4 -11]]
Srutal
2.121
2048/2025
3
<<3 0 -7]]
Augmented
1.549
128/125
4
<<4 4 -3]]
Diminished
1.826
648/625
5
<<5 8 1]]
Ripple
2.702
6561/6250
6
<<6 12 5]]
Wronecki
3.781
531441/500000

7-limit temperaments

Number
Wedgie
Name
Complexity
Commas
1
<<1 4 -2 4 -6 -16]]
Dominant
1.466
36/35 64/63
2
<<2 -4 -4 -11 -12 2]]
Pajara
1.953
50/49 64/63
3
<<3 0 6 -7 1 14]]
August
1.655
36/35 128/125
4
<<4 4 4 -3 -5 -2]]
Diminished
1.494
36/35 50/49
5
<<5 8 2 1 -11 -18]]
Ripple
2.454
36/35 2560/2401
6
<<6 0 0 -14 -17 0]]
Hexe
2.689
50/49 128/125

11-limit temperaments

Number
Wedgie
Name
Complexity
Commas
1
<<1 4 -2 6 4 -6 6 -16 0 24]]
Domineering
1.523
36/35 45/44 64/63
2
<<2 -4 -4 0 -11 -12 -7 2 14 14]]
Pajaric
1.722
45/44 50/49 56/55
3
<<3 0 6 6 -7 1 -1 14 14 -4]]
August
1.506
36/35 45/44 56/55
4
<<4 4 4 0 -3 -5 -14 -2 -14 -14]]
Diminished
1.582
36/35 50/49 56/55
5
<<5 8 2 6 1 -11 -8 -18 -14 10]]
Ripple
2.130
36/35 80/77 126/121
6
<<6 0 0 0 -14 -17 -21 0 0 0]]
Hexe
2.410
50/49 56/55 125/121

13-limit temperaments

Number
Wedgie
Name
Complexity
Commas
1
<<1 4 -2 6 3 4 -6 6 1 -16 0 -8 24 16 -12]]
Dominatrix
1.367
27/26 36/35 45/44 64/63
2
<<2 -4 -4 0 -6 -11 -12 -7 -17 2 14 1 14 -2 -21]]
Pajaric
1.701
40/39 45/44 50/49 56/55
3
<<3 0 6 6 9 -7 1 -1 3 14 14 21 -4 3 9]]
August
1.536
27/26 36/35 45/44 56/55
4
<<4 4 4 0 0 -3 -5 -14 -15 -2 -14 -15 -14 -15 0]]
Diminished
1.564
36/35 40/39 50/49 66/65
5
<<5 8 2 6 3 1 -11 -8 -14 -18 -14 -23 10 1 -12]]
Ripple
1.996
36/35 40/39 66/65 147/143
6
<<6 0 0 0 6 -14 -17 -21 -13 0 0 14 0 17 21]]
Hexe
2.216
50/49 56/55 66/65 105/104